Shock Detection and Limiting with Discontinuous Galerkin Methods for Hyperbolic Conservation Laws

نویسندگان

  • L. Krivodonova
  • J. Xin
  • J.-F. Remacle
  • N. Chevaugeon
  • J. E. Flaherty
چکیده

We describe a strategy for detecting discontinuities and for limiting spurious oscillations near such discontinuities when solving hyperbolic systems of conservation laws by high-order discontinuous Galerkin methods. The approach is based on a strong superconvergence at the outflow boundary of each element in smooth regions of the flow. By detecting discontinuities in such variables as density or entropy, limiting may be applied only in these regions; thereby, preserving a high order of accuracy in regions where solutions are smooth. Several oneand two-dimensional flow problems illustrate the performance of these approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solutions of Euler Equations by Runge-kutta Discontinuous Galerkin Method

Runge-Kutta discontinuous Galerkin (RKDG) method is a high order finite element method for solving hyperbolic conservation laws employing useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes, TVD Runge-Kutta time discretizations and limiters. In most of the RKDG papers in the literature, the LaxFriedrichs numeri...

متن کامل

A Conservation Constrained Runge-Kutta Discontinuous Galerkin Method with the Improved CFL Condition for Conservation Laws

We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [6, 5, 4, 3] for conservation Laws. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. We use this new formulation to solve conservation laws on one-d...

متن کامل

A Runge-Kutta Discontinuous Galerkin Method with Conservation Constraints to Improve CFL Condition for Solving Conservation Laws

We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [7, 6, 5, 4] for conservation Laws. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. We use this new formulation to solve conservation laws on one-d...

متن کامل

Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws

It is well known that semi-discrete high order discontinuous Galerkin (DG) methods satisfy cell entropy inequalities for the square entropy for both scalar conservation laws and symmetric hyperbolic systems, in any space dimension and for any triangulations [39, 36]. However, this property holds only for the square entropy and the integrations in the DG methods must be exact. It is significantl...

متن کامل

The multi-dimensional limiters for discontinuous Galerkin methods on unstructured grids

High order limiters remain one of the main challenges for discontinuous Galerkin (DG) methods in solving hyperbolic conservation laws. This paper proposes an efficient limiting procedure for the DG method. The key feature is to construct additional polynomials from the solutions on neighboring cells by means of secondary reconstruction. Then the limited solution on current cell can be obtained ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004